If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-9x-33=0
a = 6; b = -9; c = -33;
Δ = b2-4ac
Δ = -92-4·6·(-33)
Δ = 873
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{873}=\sqrt{9*97}=\sqrt{9}*\sqrt{97}=3\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3\sqrt{97}}{2*6}=\frac{9-3\sqrt{97}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3\sqrt{97}}{2*6}=\frac{9+3\sqrt{97}}{12} $
| x/2-1/2=3/8x-5/8 | | 3q-5=-5+3q | | -23=-1.75x-9 | | 2/3x+1/3=4/5x-7/5 | | 9x+8=6x^2−25 | | -6(b-2)=4b+2(6-5b) | | 8d+8=2d+38 | | 7q^2+2q+9=0 | | 8x+1=x-34 | | (7)/(8)z+(1)/(2)=-3 | | 3x^2-21x=8 | | 3(x-4)+1=-4x+5 | | 0.4x-75=180 | | 2x-3x(5x-1)-6=0 | | 3y+1=5y+13 | | 12(b+12)+6=9(b-2)+9 | | 3n^2=33n-90 | | h+47=10 | | 1/3x-1/2=-1/5x-1 | | x²-x+20=0 | | 0.4x-76=180 | | 7x=5+10 | | 9x+9-7x=2(x+6) | | 0.4x-76=90 | | 12p-14+2=36 | | -1/2x1/8=-1/3x-1/4 | | 7n+13n=-20 | | 2x/3-6=18 | | 2p-6=p+6 | | 4(5x-17)=72 | | y=14•8 | | (13x-7)^2=100 |